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StyleGAN3: a translation/rotation equivariant model

Although current SOTA GANs can generate realistic images, they are not
transformation(translation/rotation) equivariant:

e Moving a head causes the nose to move, which in turn moves the skin
on the nose.

e GANSs: details/textures seem to stick to image coordinates instead of
surfaces of parent objects.



“Texture sticking” issue: The looping video shows small random walks around a central point in the
latent space. Details (hairs, wrinkles, etc.) from StyleGAN2 (left) appear to be glued to the screen
coordinates while the face moves under it.



https://docs.google.com/file/d/1ZWwvJNK2aDwZHgtWKrAJnat6r4vTCJyL/preview

By doing latent space interpolation, extract a vertical segment of pixels from
each generated image and stack them horizontally. The desired result is hairs
moving in animation, but styleGAN2 creates horizontal streaks.



https://docs.google.com/file/d/1ZF7AX9snKSeSgl-EuwPI4pWxLnjGZqjf/preview

The reason why it happens is due to careless signal processing during generator
upsampling.

e Consider a 2D feature map z, and a common operation fin NN (convolution,
nonlinearity, etc), and a spatial transformation t. We don’t want f to influence t when t
is applied to following layers. i.e. we want fot(z) = tof(z).

e Then fis anequivariant operation.

e E.g. Atranslationis applied to alow-resolution feature map so the coarse features
(like face) is getting translated. After a series of operation in the network
(convolution, upsampling, nonlinear activation, etc), the same translation gets applied
to high-resolution feature maps s.t. fine features (like eyes/nose) can move with the
face consistently.



Formally..

e  Nyquist-Shannon sampling theorem: a regularly sampled signal cannot represent any continuous signal containing
frequencies between zero and half of the sample rate.
Image as signals: sampling rate s = image pixel width
Suppose Z: discrete pixel map, z: underlying continuous image intensity signal space
F: equivariant operation on Z, f: corresponding operation on continuous space z.
e  Anoperationindiscrete domain can be seen to perform a corresponding operation on the continuous domain.

f(2) = ¢ * F(IIL; © 2), F(Z) =11, ©f(¢s * Z),
Where q‘)g is interpolation filter that recovers continuous f(z) from discrete F[Z], ¢s (il’?) = SillC(Sl'()) - SiDC(SIEl )

m is the sampling grid.
s

* denotes continuous convolution and (%) denotes pointwise multiplication.



Formally..

e Nyquist-Shannon sampling theorem: a regularly sampled signal cannot represent any
continuous signal containing frequencies between zero and half of the sample rate.

e Suppose s: sampling rate of input feature map, s”: sampling rate of output feature map.
Then an equivariant operation must not generate frequency content above the

output bandlimit of s72.



Check common operations in neural networks

e Convolution: Fy(Z) = K * Z,
feorv(2) = s * (K + (1,0 2)) = K * (¢ (I, ©2)) = K * 2

- Introduces no new frequencies, bandlimit requirements fulfilled.
- But for rotation equivariance, K needs to be radially symmetric.
e Upsampling: f;(z) = =
- Just increases sampling rate in discrete domain, does nothing / identity mapping in
continuous domain, bandlimit requirements fulfilled.
e Downsampling: must low-pass filter z to remove frequencies above the output bandlimit.
e Nonlinearity: activation function like ReLU can introduce arbitrarily high frequencies.
- Solution: low-pass filtering.
- But low-pass filtering needs to be operated in a continuous space, we can approximate it by
first upsampling the signal, applying nonlinearity, and then downsampling.



Redesign every operation in styleGAN2

StyleGAN2:

A mapping network transforms a latent vector to a
latent code w~W.

A synthesis network G starts from a learned constant
Z,and applies a sequence of N layers (convolutions,
nonlinearities, upsampling, per-pixel noise) to produce
output image G(Zo; w), where w controls the
modulation of the convolution kernels.
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Redesign every operation in styleGAN2

StyleGANS:

Replace the learned input constant Z with Fourier
features -> advantage of naturally defining a spatially
infinite map.

Maintaining a fixed-size margin around the target
canvas, since theorem assumes an infinite continuous
space.

Replace 2x upsampling filter with an ideal low-pass
filter, a windowed sinc filter with a large window size
n=6. Filter cutoff = s/2.

Wrap each leakyReLU with an upsampling and
downsampling layer.

For rotation equivariance, replace the 3x3 convolution
kernel with 1x1 kernel.
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Results

Dataset Config FID] EQ-Tt EQ-R?
FFHQ-U StyleGAN2 379 1589 10.79
70000 img, 10242 StyleGAN3-T (ours) 3.67 6169 1395
Train from scratch StyleGAN3-R (ours) 3.66 6478 47.64
FFHQ StyleGAN2 270 1358 1022
70000 img. 10242 StyleGAN3-T (ours) 279 6121 13.82
Train from scratch StyleGAN3-R (ours) 3.07 6476 46.62
METFACES-U StyleGAN2 1898 18.77 13.19
1336 img, 10247 StyleGAN3-T (ours) 18.75 64.11 16.63
ADA. from FFHQ-U | StyleGAN3-R (ours) | 18.75 66.34 48.57
METFACES StyleGAN2 1522 1639 12.89
1336 img, 10242 StyleGAN3-T (ours) | 15.11 6523 16.82
ADA. from FFHQ StyleGAN3-R (ours) | 1533 6486 46.81
AFHQV2 StyleGAN2 462 1383 11.50
15803 img, 5122 StyleGAN3-T (ours) 4.04 60.15 1351
ADA. from scratch | StyleGAN3-R (ours) 440 6489 4034
BEACHES StyleGAN2 503 1573 12.69
20155 img, 5122 StyleGAN3-T (ours) 432 5933 1588
ADA. from scratch | StyleGAN3-R (ours) 457 63.66 3742

EQ-T and EQ-R measures the model’s
equivariance to translation and rotation, which is
peak signal-to-noise ratio (PSNR) in decibels (dB)
between two assets of images.



Pros

Generate images with details
moving with coarse features
when doing interpolation in
latent space (equivariance to
translation and rotationin
latent space)

Potential application toward
GAN-based video/animation
generation.

Cons

Computationally hard and
expensive.

It’s difficult to train it on
image datasets where aliasing
is a feature of the aesthetic
(e.g. black-and-white
cartoons/low-quality jpegs)





https://docs.google.com/file/d/1j1r0FtidIzQ4yz4_fXapTXREKbTRS7_8/preview

